Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs.

نویسندگان

  • Mireya Martínez-Pérez
  • Frederic Aparicio
  • Maria Pilar López-Gresa
  • Jose María Bellés
  • Jesus A Sánchez-Navarro
  • Vicente Pallás
چکیده

N6-methyladenosine (m6A) is an internal, reversible nucleotide modification that constitutes an important regulatory mechanism in RNA biology. Unlike mammals and yeast, no component of the m6A cellular machinery has been described in plants at present. m6A has been identified in the genomic RNAs of diverse mammalian viruses and, additionally, viral infection was found to be modulated by the abundance of m6A in viral RNAs. Here we show that the Arabidopsis thaliana protein atALKBH9B (At2g17970) is a demethylase that removes m6A from single-stranded RNA molecules in vitro. atALKBH9B accumulates in cytoplasmic granules, which colocalize with siRNA bodies and associate with P bodies, suggesting that atALKBH9B m6A demethylase activity could be linked to mRNA silencing and/or mRNA decay processes. Moreover, we identified the presence of m6A in the genomes of two members of the Bromoviridae family, alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV). The demethylation activity of atALKBH9B affected the infectivity of AMV but not of CMV, correlating with the ability of atALKBH9B to interact (or not) with their coat proteins. Suppression of atALKBH9B increased the relative abundance of m6A in the AMV genome, impairing the systemic invasion of the plant, while not having any effect on CMV infection. Our findings suggest that, as recently found in animal viruses, m6A modification may represent a plant regulatory strategy to control cytoplasmic-replicating RNA viruses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection

The RNA modification N6-methyladenosine (m6A) post-transcriptionally regulates RNA function. The cellular machinery that controls m6A includes methyltransferases and demethylases that add or remove this modification, as well as m6A-binding YTHDF proteins that promote the translation or degradation of m6A-modified mRNA. We demonstrate that m6A modulates infection by hepatitis C virus (HCV). Depl...

متن کامل

Emerging Roles of N6-Methyladenosine on HIV-1 RNA Metabolism and Viral Replication

N6-methyladenosine (m6A) is the most abundant internal modification present in Eukaryotic mRNA. The functions of this chemical modification are mediated by m6Abinding proteins (m6A readers) and regulated by methyltransferases (m6A writers) and demethylases (m6A erasers), which together are proposed to be responsible of a new layer of post-transcriptional control of gene expression. Despite the ...

متن کامل

N6-Methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5

N(6)-Methyladenosine (m6A) is currently one of the most intensively studied post-transcriptional modifications in RNA. Due to its critical role in epigenetics and physiological links to several human diseases, it is also of tremendous biological and medical interest. The m6A mark is dynamically reversed by human demethylases FTO and ALKBH5, however the mechanism by which these enzymes selective...

متن کامل

Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication

Polyomaviruses are a family of small DNA tumor viruses that includes several pathogenic human members, including Merkel cell polyomavirus, BK virus and JC virus. As is characteristic of DNA tumor viruses, gene expression in polyomaviruses is temporally regulated into an early phase, consisting of the viral regulatory proteins, and a late phase, consisting of the viral structural proteins. Previ...

متن کامل

RNA N6-adenosine methylation (m6A) steers epitranscriptomic control of herpesvirus replication

Latency is a hallmark of all herpesviruses, during which the viral genomes are silenced through DNA methylation and suppressive histone modifications. When latent herpesviruses reactivate to undergo productive lytic replication, the suppressive epigenetic marks are replaced with active ones to allow for transcription of viral genes. Interestingly, by using Kaposi's sarcoma-associated herpesviru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 40  شماره 

صفحات  -

تاریخ انتشار 2017